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1. Slider-crank mechanism system 

 

Fig. 1 A system of slider-crank mechanisms 

Fig. 1 shows a system with three slider-crank mechanisms. The three cranks are attached to 

the disc by revolute joints, and the three cranks therefore have the same angular velocity and the 

same length, which is the radius of the disc 
c

X . The angular velocity is 1ω =  rad/s. The lengths 

of the three couplers are 
1

X , 
2

X , and 
3

X , respectively.  

The motion outputs are the displacements of the three sliders, denoted by 
i

S  ( 1,2,3i = ). 

They are given by 

 2 2cos ( sin )
i c i i c i

S X X Xθ θ= + −   (1) 

where 
i
θ  are the motion inputs as shown in Fig. 1. The required motion outputs are the nominal 

displacements of the sliders and are given by  

 2 2cos ( sin )
i

R c i i c i
S µ θ µ µ θ= + −   (2) 

where 
c

µ  and 
i

µ  are the mean values of 
c

X  and 
i

X , respectively.  

The motion errors are defined by 

 
i

i R i
S S S∆ = −   (3) 
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2. Reliability definition and information about random variables 

Time-dependent system reliability analysis evaluates the probability of failure 
0

( , )s
S

fp t t  of a 

system after it has been put into operation for a period of time defined by 
0

[ , ]
s

t t . For the slider-

crank mechanism system problem, the system is required to produce accurate motion output 

within a full motion cycle, and the period of time is therefore [0,2 ]π  seconds. There are three 

limit-state functions given by 

 ( , )
ii i

S Y g t∆ = = X   (4) 

in which X is a vector of random variables, and t  is time. For this problem,
c 1 2 3

(X ,X ,X ,X )=X .  

The probability of failure of mechanism i  is given by       

 { }0
p ( , ) Pr ( , ) 0,  [0,2 ] 
i

f s it g t tt π= > ∃ ∈X   (5) 

where {}Pr ⋅  stands for a probability, and ∃  stands for “there exists”. 

For the present series system, 
0

( , )s
S

fp t t  is defined by 

 
0 1 32

( , ) ( , ) ( , ) ( , ) [0,2Pr{ 0 0 0,   }]
S

sfp t t g t g t g tt π= > > > ∃ ∈X X X∪ ∪   (6) 

For this mechanism system, all the lengths are independent random variables, and one 

possible set of their distributions is given in Table 1. 

Table 1 Random variables 

Variable Mean (mm) 
Standard 

deviation (mm) 
Distribution 

c
X  100 0.5 Normal 

1
X  150 0.75 Normal 

2
X  250 1.25 Normal 

3
X  200 1.0 Normal 

The motion errors of the mechanisms should not be greater than the allowable motion errors 

i
ε . One example of the possible allowable motion errors is as follows: 

1
4.8ε = mm, 

2
5.5ε = mm, 

and 
3

5.2ε = mm, respectively. Given the motion inputs to be 
1

tθ ω= , 
2

/ 6tθ ω π= − , and 

3
/ 3tθ ω π= − , the limit-state functions are  

 
2 2 2 2( ( )cos ( sin ) ( si, ) n )

i ii i c c i c i ic i
Y Xtg X Xθ θ θµ µ µ ε= −= + − − − −X   (7) 

3. Features of the limit-state functions 

The limit-state functions are quite nonlinear with respect to time. One trajectory of the 

motion error of the first mechanism is plotted in Fig. 2 for 
1

( , ) (100.5,150.0)
c

X X =  mm. As 

shown in Fig. 2, the derivatives of the limit-state function at two time instants do not exist. This 

makes it difficult to use traditional reliability methods, for example, the First and Second Order 

Reliability Methods (FORM and SORM). The maximum values of limit-state functions with 
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respect to time are required to calculate the time-dependent probabilities of failure. Fig. 3 shows 

the maximum motion error of mechanism 1. The shape of the maximum error is quite irregular. 

Fig. 4 shows the probability density function of the maximum error of mechanism 1. 

 
Fig. 2 Motion error of mechanism 1 at point (100.5, 150.0) mm 

 
Fig. 3 Maximum motion error of mechanism 1 

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

t

∆
 S
1
 (
m
m
)

98

99
100

101
102

146

148

150

152

154
0

2

4

6

8

X
c
 (mm)X

1
 (mm)

∆
 S

1
 (
m
m
)



4 
 

 
Fig. 4 Probability density function of the maximum motion error of mechanism 1 

 

4. Matlab codes  

The Matlab codes of this problem are downloadable at:  

http://web.mst.edu/~dux/repository/computer_codes.html. 

 

The function and its inputs and outputs are described below. 

(1) Limit-state functions: limit_state_functions.m 

[Y1,Y2,Y3]=limit_state_functions(t,X,X_mu,omega,epsilon) 

Inputs: 

• t: a row vector of time instants. 

• X: a row vector of lengths of links 
1 2 3

( , , , )
c

X X X X . 

• X_mu: a row vector of mean values of X. 

• omega: the angular velocity of the three cranks. 

• epsilon: a row vector of allowable motion errors. 

Outputs: 

• Y1: a row vector of limit-state function values of mechanism 1. 

• Y2: a row vector of limit-state function values of mechanism 2. 

• Y3: a row vector of limit-state function values of mechanism 3. 
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(2) Example 

If one wants to obtain the limit-state functions at 0, 1 and 5 seconds, the lengths are 100.1
c

X =  

mm, 
1

149.8X = mm, 
2

250.5X = mm and 
3

199.6X = mm; 1ω =  rad/s; and 
1

0.20ε = mm, 

2
0.40ε = mm and 

3
0.35ε = mm, then the code is as follows: 

t=[0, 1, 5]; 

X=[100.1, 149.8, 250.5, 199.6]; 

X_mu=[100.0, 150.0, 250.0, 200.0]; 

omega=1; 

epsilon=[0.20, 0.40, 0.35]; 

[Y1,Y2,Y3]=limit_state_functions(t,X,X_mu,omega,epsilon) 

Then the outputs will be 

Y1=[-0.1000, 0.0448, 0.1118]. 

Y2=[0.1867, 0.1889, 0.0783]. 

Y3=[0.0856, -0.0497, 0.1764]. 


